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Abstract
We study a class of mass transport models where mass is transported in a
preferred direction around a one-dimensional periodic lattice and is globally
conserved. The model encompasses both discrete and continuous masses and
parallel and random sequential dynamics and includes models such as the zero-
range process and asymmetric random average process as special cases. We
derive a necessary and sufficient condition for the steady state to factorize,
which takes a rather simple form.

PACS numbers: 05.70.Fh, 02.50.Ey, 64.60.−i

Mass transport models form a general class of lattice models defined by dynamics in which
mass is transferred (without loss) stochastically from site to site. They have attracted much
recent attention, especially in connection with ‘condensation transitions’ [1–6]. Examples
include the zero-range process (ZRP) [1] and asymmetric random average process (ARAP)
[7, 8], which have been used to model such diverse situations as traffic flow, clustering of
buses [4], phase separation dynamics [9] and force propagation through granular media [10].
In general, it is difficult to determine the steady state distribution of such models. Thus, it
is remarkable that, not only are the steady states of many models found, they often share
a very convenient property, namely, a factorized steady state (also referred to as a product
measure). Of course, such a property greatly facilitates the analysis of interesting behaviour,
e.g., condensation.

In this letter, we determine the requirement for a factorized steady state in a very broad
class of mass transport models. The form of this necessary and sufficient condition, stated in
(15), turns out to be appealingly simple. Encompassing both random sequential and parallel
dynamics, this class includes both the ZRP and ARAP. We discuss the salient features of the
approach leading to (15) and recover some previously known cases.
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We consider a one-dimensional lattice of L sites with periodic boundary conditions (site
L + 1 = site 1): associated with each site is a mass mi, i = 1, . . . , L. The total mass is
given by M = ∑L

i=1 mi . We shall most generally consider mi as continuous variables. The
dynamics is as follows: from time t to t + 1, at each site i, mass µi drawn from a distribution
ϕ(µi |mi) ‘chips off’ the mass mi , and moves to site i + 1. Thus the master equation for the
weights (unnormalized probabilities) Ft(m ) is

Ft+1(m ) =
L∏

i=1

∫ ∞

0
dm′

i

∫ m′
i

0
dµi ϕ(µi |m′

i )

L∏
j=1

δ(mj − m′
j + µj − µj−1)Ft (m

′) (1)

where m ≡ {m1,m2, . . . , mL}. Note that this dynamics conserves the total mass, M, so that
Ft(m ) may be considered as a function of only L − 1 variables. The integral of the weights,
subject to the constraint of globally conserved mass,

Z(M,L) ≡
L∏

i=1

∫ ∞

0
dmi δ

(
M −

L∑
i=1

mi

)
Ft(m ) (2)

should be finite and serves as a ‘partition function,’ so that F/Z is a probability density (or
‘canonical distribution’).

In the t → ∞ limit, Ft(m ) approaches a t-independent function, which we denote simply
by F(m ) and refer to as the steady state. Defining the Laplace transform

G(s) =
[

L∏
i=1

∫ ∞

0
dmi e−simi

]
F(m ) (3)

and transforming (1), we find

G(s) =
[

L∏
i=1

∫ ∞

0
dm′

i

∫ m′
i

0
dµi ϕ(µi |m′

i ) e−si(m′
i−µi+µi−1)

]
F(m′). (4)

We now assume that the steady state weight factorizes

F(m ) =
∏

i

f (mi) (5)

which implies

G(s) =
∏

i

g(si) where g(s) =
∫ ∞

0
dm f (m) e−sm. (6)

Then (4) becomes∏
i

g(si) =
∏

i

[∫ ∞

0
dm′

i f (m′
i )

∫ m′
i

0
dµi ϕ(µi |m′

i ) e−si (m
′
i−µi+µi−1)

]
. (7)

Changing variables to σ ≡ m − µ (the mass remaining after the move), we write

f (m)ϕ(µ|m) = P(µ, σ ). (8)

Note that no assumption on the form of f (m) or ϕ(µ|m) is implied at this point. With this
notation (7) becomes∏

i

g(si) =
∏

i

[∫ ∞

0
dµi

∫ ∞

0
dσi P(µi, σi) e−siσi−si+1µi

]
. (9)

A necessary and sufficient condition for the solution of (9) is∫ ∞

0
dµi

∫ ∞

0
dσi P(µi, σi) e−siσi−si+1µi = �(si)k(si+1) (10)
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where the two functions, k and �, must satisfy

k(s)�(s) = g(s). (11)

That (10) is necessary and sufficient may be seen by taking the logarithm of (9) then taking
derivatives with respect to si and si+1.

Condition (11) implies via the convolution theorem that

f (m) = [v ∗ w] (m) ≡
∫ m

0
dµv (µ) w(m − µ) (12)

where

k(s) =
∫ ∞

0
dµ e−sµv(µ) �(s) =

∫ ∞

0
dσ e−sσ w(σ ). (13)

Then, equations (10) and (13) imply

P (µ, σ ) = v (µ) w(σ). (14)

Finally we obtain from (8) and (12)

ϕ(µ|m) = v (µ) w (m − µ)

[v ∗ w](m)
. (15)

Let us emphasize that the condition for a factorized stationary distribution for the whole lattice
precisely reduces to the condition that ϕ(µ|m) has the form (15). Thus, equation (15) is
the central result of this paper: for chipping rules of the form (15), one has a factorized
steady state (5) with weights given by (12). Let us comment on several important points.
Equations (11)–(15) allow us to define ‘equivalence classes’ of chipping distributions—those
leading to the same stationary state—by dividing k(s) and multiplying �(s) by any (well-
behaved) function of s. In particular, their roles can be ‘reversed’ to form a ‘dual’ ϕ, i.e.,
w (µ) v (m − µ) /[w∗v](m). Now, we can obviously interpret the factors in (14) as a function
for µ, the mass which moves, and a function of σ , the mass which stays. In this sense, ‘duality’
reverses these two portions of the mass, without changing F(m ). If we further perform a
Galilean transformation (shifting the entire lattice by one site in a time step) and a parity
transformation (i ⇔ L + 1 − i), then we recover the original system. Finally, note that both ϕ

and the steady state (F/Z) are invariant under shifts of ln v and ln w by a linear function (i.e.,
there are arbitrary amplitudes or exponential factors in v and w: aµ, aσ ).

In addition to treating models with parallel dynamics, manifest in (1), we can extend the
approach outlined above to models with random sequential dynamics. Let the probability of
a chipping event in a time step ∝ dt so that, to leading order in dt , at most one chipping event
over the whole lattice occurs per update. Furthermore, we can let the duration of a time step
be dt and take dt → 0 to obtain a continuous time limit where chipping events occur with
rates per unit time. Thus, we write

v(µ) = δ(µ) + x(µ) dt (16)

where δ(µ) is the Dirac delta function. Then (12) and (15) yield

f (m) = w(m) + dt[x ∗ w](m)

and

ϕ(µ|m) = 1

w(m) + dt[x ∗ w](m)
{δ(µ)w(m) + dt x(µ)w(m − µ)}

= δ(µ)

[
1 − dt

w(m)
[x ∗ w](m)

]
+ dt

x(µ)w(m − µ)

w(m)
+ O(dt2).
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Taking dt → 0 we obtain the continuous time limit where mass µ moves from a site with
mass m with rate x(µ)w(m − µ)/w(m) and f (m) = w(m).

Let us illustrate how this approach unifies two seemingly unrelated models—ARAP and
ZRP. First we consider the ARAP [7, 8, 11, 12], a model in which each site contains a
continuous amount of mass and at each time step a random fraction of the mass moves to the
next site to the right. Its precise definition lies in ψ(r|m) = ϕ(µ|m)m, the distribution for
r, the fraction of mass that moves to the neighbouring site. A known family of distributions
where one has a factorized steady state is ψ(r|m) = (n − 1)rn−2 [10, 11] which becomes

ϕ(µ|m) = (n − 1)
µn−2

mn−1
. (17)

In our approach, the results are particularly simple:

v(µ) = µn−2 w(σ) = 1 (18)

f (m) = mn−1/(n − 1). (19)

Note that, to relate this f (m) to relevant quantities in the literature (e.g., [11]), the
single site mass distribution, defined as the full distribution integrated over the rest of the
mass variables, is p(m) = f (m)Z (M − m,L − 1) /Z(M,L). In this case, Z(M,L) =
MnL−1[�(n − 1)]L/�(nL), so that our p(m) reduces, e.g., to equation (37) of [11] in the
thermodynamic limit.

Another well-known case is the zero-range process, reviewed in [1]. A focus of major
interest (for recent developments see, for example, [13–16]), it is a mass transport model where
mi takes integer values and a unit mass moves from site i to site i + 1 with probability u(mi).
Within our approach, this model appears as a very special case, with Dirac delta distributions
for both v and w. Since the moved mass can take only two values while the one remaining
can be of any integer, the most general forms are

v(µ) = δ(µ) + aδ(µ − 1) w(σ) =
∞∑

k=0

wkδ(σ − k) (20)

where a and wk are arbitrary weights. As overall amplitudes are irrelevant, we have chosen
the coefficient of δ(µ) to be unity and will set w0 = 1. From f = v ∗ w, we see that

f (m) = w(m) + aw(m − 1) (21)

= δ(m) +
∞∑

k=1

[awm−1 + wm]δ(m − k). (22)

With a little care, we obtain

ϕ(µ|m) = wmδ(µ) + awm−1δ(µ − 1)

wm + awm−1
. (23)

The coefficient of δ(µ − 1) is precisely the chipping probability, denoted by u(m) above.
From here, we easily find the wm in terms of the u:

wm = am

m∏
n=1

1 − u(n)

u(n)
. (24)

Substituting this expression into (22) yields for the weights,

f (m) =
∞∑

k=0

fkδ(m − k) (25)
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where

fk = ak

1 − u(k)

k∏
n=1

1 − u(n)

u(n)
for k � 1 (26)

= 1 for k = 0. (27)

This result was previously obtained by a more complicated approach [17]. Note that the
factors ak will drop out when we consider the probability density itself: F(m )/Z. We close
this paragraph by noting the case with random sequential dynamics, which is obtained by
letting a = ã dt and u(m) = x(m) dt where dt → 0 yielding

fk = ãk

k∏
n=1

1

x(k)
k � 1. (28)

Finally, the results presented here may be generalized to the case of heterogeneous mass
transfer where ϕi(µ|m) depends on the site i. A necessary and sufficient condition for a
factorized steady state is that

ϕi(µ|m) = v (µ) wi (m − µ)

[v ∗ wi](m)
(29)

where v and wi are arbitrary functions but v must be the same for each site. The weight
functions are given by

fi(m) = [v ∗ wi](m). (30)

To conclude, we have determined the condition for the steady state in a general class of
mass transport models to factorize. This class encompasses both continuous and discrete mass,
as well as parallel and random sequential dynamics. Not only does this approach provide a
unified perspective of all previously known models, it opens avenues to construct new models
with this property (e.g., binomial chipping process and generalized zero-range processes). In
addition, we believe this approach would facilitate a deeper understanding of the existence
and nature of condensates and possibly reveal novel forms of phase transitions. Implications
of the gauge-like transformations should also be explored. Further work is in progress and
will be published elsewhere.
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